منابع مشابه
On equal sums of ninth powers
In this paper, we develop an elementary method to obtain infinitely many solutions of the Diophantine equation x1 + x 9 2 + x 9 3 + x 9 4 + x 9 5 + x 9 6 = y 9 1 + y 9 2 + y 9 3 + y 9 4 + y 9 5 + y 9 6 and we give some numerical results.
متن کاملA Note on Sums of Powers
We improve a result of Bennett concerning certain sequences involving sums of powers of positive integers.
متن کاملNew results in equal sums of like powers
This paper reports on new results for the equation
متن کاملEqual sums of four seventh powers
In this paper, the method used to find the smallest, nontrivial, positive integer solution of a1 + a 7 2 + a 7 3 + a 7 4 = b 7 1 + b 7 2 + b 7 3 + b 7 4 is discussed. The solution is 149 + 123 + 14 + 10 = 146 + 129 + 90 + 15. Factors enabling this discovery are advances in computing power, available workstation memory, and the appropriate choice of optimized algorithms. Introduction Diophantine...
متن کاملSimultaneous equal sums of three powers
Using a result of Salberger [9] we show that the number of non-trivial positive integer solutions x0, . . . , x5 6 B to the simultaneous equations x0 + x c 1 + x c 2 = x c 3 + x c 4 + x c 5, x d 0 + x d 1 + x d 2 = x d 3 + x d 4 + x d 5, is o(B) whenever d > max{2, c}. Mathematics Subject Classification (2000): 11D45 (11D41, 11P05)
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1966
ISSN: 0025-5718
DOI: 10.2307/2003510